

Learning Joomla! 1.5
Extension Development

Joseph L. LeBlanc

Chapter No. 8
"Using JavaScript Effects"

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

 In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.8 "Using JavaScript Effects"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Joseph L. LeBlanc started with computers at a very young age. His independent
education gave him the flexibility to experiment with and learn computer science.
Joseph holds a bachelor's degree in Management Information Systems from Oral
Roberts University.

Joseph is a freelance Joomla! extension developer. He released a component tutorial
in May 2004, which was later translated into French, Polish, and Russian. Work
samples and open-source extensions are available at www.jlleblanc.com. In addition
to freelancing, he is an active member of the Washington, DC tech community and
Joomla! Bug Squad.

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

I would like to thank the following people for making this
book possible:

• Packt Publishing, for giving me the opportunity to author
this work.

• Everyone who bought the first edition of this book, for
offering both praise and critiques. By speaking up, you
helped make this edition a reality.

• The Joomla! team, for developing some of the best software
in the world.

• The DC PHP community, for showing me different ways
people are solving similar problems.

• Steve and Sue Meeks, for their flexibility with my schedule
during the writing process and for giving Joomla! a shot.

• Everyone who has downloaded and used my open-source
components.

• My professors, for taking me on the Journey of a Byte and
showing me how to write effectively.

• Mom and Dad, for teaching me how to learn.

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

 Learning Joomla! 1.5
Extension Development
Although Joomla! has all of the basic content management tools you need to build a
website, it is also designed to also run custom-built extensions written in PHP. This book
steps through working examples of PHP code written to work seamlessly in Joomla!.
Topics covered in this book include libraries for generating user interface elements,
database table classes, Model-View-Controller design, configuration panels, the use of
JavaScript libraries, and URL routing. After all of the code has been written, it is bundled
in .zip files, ready to be installed by Joomla! site webmasters.

What This Book Covers
Chapter 1 gives you an overview of how Joomla! works. The example project used
throughout the book is also introduced. The three types of extensions (components,
modules, and plug-ins) are covered, along with a description of how they work together.

Chapter 2 begins with the development of the component used in the project. Initial
entries are made in the database and toolbars are built for the backend. The general file
structure of Joomla! is also introduced.

Chapter 3 walks through the creation of the backend interface for creating, editing, and
deleting records in the project through the Model-View-Controller design pattern.
Database table classes are also introduced.

Chapter 4 builds a frontend interface for listing and viewing records. Additionally, code
to generate and interpret search engine friendly links is covered. The project is also
expanded slightly, as a commenting feature is added.

Chapter 5 takes a closer look at the methods provided by the JTable, JHTML, and JUser
classes. The JTable class allows you to manage a list of ordered records, while JHTML
helps generate common HTML elements. Also, the concept of checking out records when
JTable and JUser are used together is introduced.

Chapter 6 introduces a module used to list records on every page of the site. The module
takes advantage of layouts, where the same data can be formatted differently depending
on how the code is called. Some of the code is also separated out into a helper class so
that the main code generating the module stays simple.

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Chapter 7 continues development of the component, adding elements from the JTHML
class that make the component blend in with the rest of the Joomla! interface. Controls
over the publishing of records are introduced, as well as an interface for removing
offensive comments. More toolbars are added, and multiple controllers are introduced.

Chapter 8 shows how to add many common JavaScript effects to your extensions. This
chapter also explains how to create a Google Map and interact with it using MooTools.
Finally, a way of using jQuery alongside MooTools is covered.

Chapter 9 develops three plug-ins. The first plug-in finds the names of records in the
database and turns them in to links to those records. A second plug-in displays a short
summary of the record when certain code is added to content articles. Finally, another
plug-in is designed so that records are pulled up alongside Joomla! content searches.

Chapter 10 adds configuration parameters to the components, modules, and plug-ins.
These are handled through XML and generate a predictable interface in the backend
for setting options. Retrieving the value of these parameters is standardized through
built-in functions.

Chapter 11 adds links and functionality to the component where users can email pages to
their friends. It also prepares the user interface for internationalization and does a partial
translation into French. Additionally, the chapter provides a solution for handling
uploaded files.

Chapter 12 expands the XML files used for parameters and adds a listing of all the
files and folders in each extension. Once this file is compressed along with the rest
of the code into a ZIP archive, it is ready to be installed on another copy of Joomla!
without any programmer intervention. Custom installation scripts and SQL code are
also added to the component.

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Using JavaScript Effects
As our critics continue to write reviews and moderate comments, we will take some
time to look into options for improving the user interface and adding new functions.
Modern websites use JavaScript-driven effects to aid navigation, reduce on-screen
clutter, and provide interactive features that are not possible with static HTML.
Joomla! has several built-in elements that you can use without writing a single line
of JavaScript. The MooTools framework powers many elements seen throughout the
Joomla! backend UI; these can be reused in both the frontend and the backend. We
will learn to use JavaScript effects through these topics:

Modal boxes
Tool tips
Sliding panes
Customizing Google Maps
Using jQuery

Modal boxes
 There will be some times when you will want to highlight a piece of information
without making visitors load a completely separate webpage. The "lightbox" effect
is now frequently used across the web as a way of doing this. When you click on a
link where this effect is applied, the webpage is grayed out and a small window with
the required content fl oats on top of the page. Users are prevented from clicking
elsewhere on the page until the window is closed. This window is referred to as a
modal box.

•

•

•

•

•

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Using JavaScript effects

[164]

To demonstrate the use of modal boxes (along with the other examples in this
chapter), we will create a component separate from "Restaurant Reviews". Go to the
components folder of your Joomla! installation and create a folder named com_js.
Within this folder, create a fi le named js.php with the following code:

<?php
defined('_JEXEC') or die('Restricted access');

jimport('joomla.application.component.controller');

class JsController extends JController
{
 function modalBox()
 {
 JHTML::_('behavior.modal', 'a.popup');

 ?>
 <a href="index.php?option=com_js&task=insideModal&
 format=raw" class="popup">Read the daily menu.
 <?php
 }

 function insideModal()
 {
 ?>
 <h1>Today's Menu</h1>

 Crispy chicken nuggets with ginger dressing
 Swordfish in bean curd sauce
 Stir-fried vegetables over white rice

 <?php
 }
}

$controller = new JsController();
$controller->execute(JRequest::getCmd('task'));

After checking to make sure that the request to execute js.php is coming from
within Joomla!, the controller code is loaded from the Joomla! framework.
JsController is then declared as an extension of JController. After the class is
defi ned, $controller is set as a new instance of JsController and the execute()
member function is called, with the current task passed in.

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Chapter 8.

[165]

The controller contains two functions—modalBox() and insideModal(). The
modalBox() function is intended to be displayed as a standard page in Joomla!,
while insideModal() has the HTML content that will fi ll the modal window. Inside
modalBox(), there is a call to JHTML::_('behavior.modal', 'a.popup');. Calling
JHTML::_('behavior.modal') tells the Joomla! framework to load the JavaScript
necessary for powering modal boxes. The parameter 'a.popup' tells the JavaScript
powering the modal box that we want to add this effect to all anchor tags that have a
class of popup.

An anchor tag is output after the JHMTL::_() call. This link points back to the
com_js component and sets the task to insideModal. Unlike most links in Joomla!,
this one specifi es the desired format of the output. Setting format to raw ensures
that Joomla! does not attempt to load the template or any of the modules when
generating the output; we only want the HTML intended for the window to
be loaded.

If you go to index.php?option=com_js&task=modalBox now, you should see a
screen similar to the following one:

W hen you click on the Read the daily menu link, a window will appear on the
screen like this:

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Using JavaScript effects

[166]

Notice that although JavaScript powers this effect, we did not write a single line of it.
The call to the JHTML class did this for us. To see the JavaScript that JHTML generated,
use your browser's View Source function. Within the <head> tags of the HTML
source, you should see a portion of code similar to the following:

< link rel="stylesheet" href="/media/system/css/modal.css" type=
"text/css" />
<script type="text/javascript" src=
"/media/system/js/mootools.js"></script>
<script type="text/javascript" src=
"/media/system/js/modal.js"></script>
<script type="text/javascript">
 window.addEvent('domready', function(){
 SqueezeBox.initialize({});

 $$('a.popup').each(function(el) {

 el.addEvent('click', function(e) {
 new Event(e).stop();
 SqueezeBox.fromElement(el);
 });
 });
 });
</script>

Joomla! makes frequent use of the MooTools JavaScript framework, and the code
powering the modal box is no exception. After loading some CSS for formatting the
appearance of the box, MooTools itself is loaded. The modal box JavaScript is loaded
once MooTools is available. These fi les are static and are distributed with Joomla!.

The third <script> tag includes the JavaScript dynamically generated by
Joomla! for our specifi c modal box. All of the code is enclosed within a call to
window.addEvent(). This JavaScript function is added to the window object by
MooTools and allows us to add event handlers. In this case, we are adding a handler
to the domready event so that the code waits until the DOM is fully loaded.

On the highlighted line of the code, notice the string a.popup. This is the same
selector we passed in as the second parameter of JHTML::_(). We can pass in any
desired class selector here, but in this case we only want to attach the event to anchor
tags with a class of popup. The rest of the code cycles through all of the a.popup
elements in the HTML document and applies the MooTools SqueezeBox plug-in to
each of them.

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Chapter 8.

[167]

C onfiguring the modal box
Although the current use of JHTML::_() pulls in the desired behavior, we would like
to make some adjustments. The default window for the modal is rather large for the
content we are displaying. A way of controlling the height and width would
be helpful.

Fortunately, there is a way of confi guring the modal box. The call to
JHTML::_(' behavior.modal') takes a multidimensional array containing settings
as an additional parameter. Make the highlighted adjustments to the modalBox()
function in the /components/com_js/js.php fi le:

function modalBox()
{
 $params = array(

 'size' => array(
 'x' => 350,
 'y' => 250
)
);

 JHTML::_('behavior.modal', 'a.popup', $params);

 ?>
 <a href="index.php?option=com_js&task=insideModal&format=
 raw" class="popup">Read the daily menu.
 <?php
}

The $params array has one element for the size setting. This element is an array
with the width and height values we want to use; these are represented as x and y
respectively. This specifi c array above sets the width to 350 pixels and the height to
250 pixels. The $params array is now loaded with our desired confi guration, so we
pass it in as the third parameter of JHTML::_().

Save js.php and reload index.php?option=com_js&task=modalBox in the
browser. After clicking on the Read the daily menu link, the modal box should
appear as shown below as shown below:

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Using JavaScript effects

[168]

The JavaScript generated by Joomla! has also changed. Use your browser's View
Source function to pull up the HTML code of the page. Then look for the block of
<script> declarations in the <head> section where the modal box is defi ned. The
code should look similar to this:

<link rel="stylesheet" href="/media/system/css/modal.css" type=
"text/css" />
<script type="text/javascript" src=
"/media/system/js/mootools.js"></script>
<script type="text/javascript" src=
"/media/system/js/modal.js"></script>
<script type="text/javascript">

 window.addEvent('domready', function() {

 SqueezeBox.initialize({ size: { x: 350, y: 250}});

 $$('a.popup').each(function(el) {
 el.addEvent('click', function(e) {
 new Event(e).stop();
 SqueezeBox.fromElement(el);
 });
 });
 });
</script>

The generated JavaScript is almost exactly the same as it was before, except for
the highlighted line. In the fi rst example, above an empty object was passed into
SqueezeBox.initialize(). In this example, the $params array we passed into
JHTML::_() has been transformed by Joomla! into a JavaScript object. This object is
now passed into SqueezeBox.initialize() to confi gure the SqueezeBox plug-in.

Th e raw format and MVC
In this example, two functions in the controller are used—one to generate the
main page and one to fi ll the modal box with HTML content. However, complex
components will be written using views as well. Instead of using a separate
controller function for displaying the modal box HTML, a view can be used.

To start, create a views folder in the existing /components/com_js folder. Within
this new folder, create another folder named modalcontent. For a typical view,
you would create a fi le in this folder named view.html.php. This view is a little
different; we will be setting the format to raw so we can get only the HTML code for
the contents and not an entire Joomla! page with the template. To handle the raw
format, create the fi le view.raw.php instead. Fill this fi le with the following code:

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Chapter 8.

[169]

<?php
defined('_JEXEC') or die('Restricted access');

jimport('joomla.application.component.view');

class JsViewModalcontent extends JView
{
}

This code might seem a little odd at fi rst glance. Each view in Joomla! must be
represented by an object that is an extension of JView. By default, if the display()
function is not overridden in the child object, JView::display() will be called
instead. This function will load tmpl/default.php (unless the layout parameter is
set to something other than default). Because this example does not load anything
from the database or act on the custom variables passed to it, it is desirable to allow
Joomla! to execute the default JView::display() function. The fi le default.php
must exist in the views/modalcontent/tmpl folder, though. Create the folder tmpl,
and then create a fi le named default.php, and fi ll it with the following code:

<? php defined('_JEXEC') or die('Restricted access'); ?>
<h1>Tomorrow's Menu</h1>

 Crispy beef nuggets with ginger dressing
 Catfish in bean curd sauce
 Steamed vegetables over white rice

As with other layout fi les in Joomla! views, and with all .php fi les, we fi rst check to
make sure the call is coming from within Joomla!. Then, the static HTML content is
output. To demonstrate the use of this view instead of a controller function, create a
slightly modifi ed version of the modalBox(), in /components/com_js/js.php, and
name it modalBoxMVC():

function modalBoxMVC()
{
 $params = array(
 'size' => array(
 'x' => 350,
 'y' => 250
)
);

 JHTML::_('behavior.modal', 'a.popup', $params);

 ?>
 <a href="index.php?option=com_js&view=modalcontent&
 format=raw" class="popup">Read tomorrow's menu.
 <?php
}

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Using JavaScript effects

[170]

Save all of the open fi les, and then load index.php?option=com_
js&task=modalBoxMVC in your browser and click on the Read tomorrow's
menu. link. Your screen should look like the example shown below:

Tool tips
Anot her effect used across the web is the tool tip. Tool tips are used to add messages
that are displayed near the mouse pointer when you hover over specifi c elements
on the screen. This is helpful for adding defi nitions of things without taking up
space on the page. Adding a tool tip in Joomla! is even simpler than adding
modal boxes—you don't need to make a separate call to display the content. In the
/components/com_js/js.php fi le, add the following function to the controller:

function toolTipTest()
{
 JHTML::_('behavior.tooltip');
 ?>
 <span class="hasTip" title="Click here to go to the
 home page">Homepage
 <?php
}

As with the modal box, we call JHTML::_() to pull in the MooTools framework.
This time, behavior.tooltip is passed as the parameter. After this, an anchor
tag is output, to create a link. This anchor tag is wrapped in a that has two
attributes—class and title. The class attribute is set to hasTip; this is the default
class the tool tip JavaScript looks for when setting up the effect. The title attribute
determines the text to be displayed when you move the mouse over the link.

After saving js.php, load index.php?option=com_js&task=toolTipTest and
move your mouse over the Homepage link. The tool tip should appear, similar to
this example:

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Chapter 8.

[171]

If you want to use a class other than hasTip for your elements with tool tips, you
can override it in JHTML::_(). For example, to use the class mytip insted, make the
highlighted modifi cations to the function toolTipTest() in /components/com_js/
js.php fi le:

function toolTipTest()
{
 JHTML::_('behavior.tooltip', '.mytip');
 ?>
 <span class="mytip" title="Click here to go to the
 home page">Homepage
 <?php
}

When you save js.php and reload index.php?option=com_js&task=toolTipTest,
the functionality will be the same as before, but the class will be mytip.

Slid ing panes
Throu ghout the backend of Joomla!, there are several screens containing sliding
panes full of options. This is done to save space on the screen, and to make specifi c
settings easier to fi nd. The CSS that creates the "tabbed" visual effect is automatically
included in the backend. To use the siding panes, you only need to bring in the
JavaScript and make some calls to a JPane object.

To test the panes, create a component in the backend at /administrator/
components/com_js. Add the fi le js.php to this folder, and fi ll it with the
following code:

<?php
defined('_JEXEC') or die('Restricted access');

jimport('joomla.application.component.controller');

class JsController extends JController
{
 function showPanes()
 {
 jimport('joomla.html.pane');

 ?>
 <div class="col width-45">
 <?php

 $pane = &JPane::getInstance('sliders');

 echo $pane->startPane('menu-pane');
 echo $pane->startPanel('Name', 'info-name');

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Using JavaScript effects

[172]

 echo '<p>John Worthington</p>';
 echo $pane->endPanel();
 echo $pane->startPanel('Favorite Food', 'info-food');
 echo '<p>Pad Thai</p>';
 echo $pane->endPanel();
 echo $pane->startPanel('Bio', 'info-bio');
 echo '<p>John began criticizing food in kindergarden and has
 not stopped since. His accomplishments include earning "2005
 Critic of the Year" from Digest Digest.</p>';
 echo $pane->endPanel();
 echo $pane->endPane();

 ?>
 </div>
 <?php
 }
}
$controller = new JsController();
$controller->execute(JRequest::getCmd('task'));

As wi th the frontend of the component, the backend checks to make sure the fi le is
called within Joomla!, and then defi nes a controller and executes it. The showPanes()
function starts with a call to jimport('joomla.html.pane'); to load the JPane
class. The <div> tag has classes of col and width-45; these are defi ned in the
backend CSS to display a column that takes 45% of the available screen width.

Withi n the <div>, $pane is set using the getInstance() member function of JPane.
The string 'sliders' is passed into getInstance() as JPane is capable of handling
other similar effects using the same function calls. Once $pane is set, the member
functions startPane(), endPane(), startPanel(), and endPanel() are called
in sequence. The startPane() and endPane() functions are used to enclose all of
the slider's panels. startPane() also requires a parameter that defi nes the HTML
id used on the <div> that encloses the panels. Each panel is then defi ned using
startPanel(), followed by the content for the panel, and ending with endPanel().
The startPanel() function accepts a title to be displayed as the fi rst parameter and
an HTML id for the panel as the second.

To see the JPane slider in action, save js.php and load administrator/index.
php?option=com_js&task=showPanes in your browser. You should get the
following screen:

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Chapter 8.

[173]

As you click on a different heading, the panel for that heading will expand as
the previous one slides up. No matter what you click, one and only one pane is
always visible. If you want to allow every panel to be closed, make the highlighted
modifi cation within showPanes():

<?php

$pane = &JPane::getInstance('sliders',
 array('allowAllClose' => true));

echo $pane->startPane('menu-pane');

As with the modal box, the array that is passed in gets transformed into a JavaScript
object that is output when Joomla! writes the JavaScript powering the panes. This
array defi nes the 'allowAllClose' setting as true.

Through JPane::getInstance(), the sliding panes can quickly be turned into a
tabbed interface. Change 'sliders' to 'tabs' by making the highlighted change:

<?php

$pane = &JPane::getInstance('tabs');

echo $pane->startPane('menu-pane');

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Using JavaScript effects

[174]

After saving js.php, reload administrator/index.php?option=com_
js&task=showPanes in your browser. You should now have a tabbed interface
that looks like the following example:

The sliders can be used in the frontend as well as the backend of Joomla!. To use
the sliders in the frontend, open the fi le /components/com_js/js.php, and add the
following function to the controller:

functi on frontendPanes()
{
 jimport('joomla.html.pane');

 $pane = &JPane::getInstance('sliders');

 echo $pane->startPane('menu-pane');
 echo $pane->startPanel('Name', 'info-name');
 echo '<p>John Worthington</p>';
 echo $pane->endPanel();
 echo $pane->startPanel('Favorite Food', 'info-food');
 echo '<p>Pad Thai</p>';
 echo $pane->endPanel();
 echo $pane->startPanel('Bio', 'info-bio');
 echo '<p>John began criticizing food in kindergarden and has not
 stopped since. His accomplishments include earning "2005 Critic
 of the Year" from Digest Digest.</p>';
 echo $pane->endPanel();
 echo $pane->endPane();
}

The code works in exactly the same way as it does in the backend, only we are not
wrapping the sliders in a <div> this time. The frontend does not have the CSS that
the backend does, so the display will be different, but the functionality will be the
same. Save js.php, and load index.php?option=com_js&task=frontendPanes in
your browser. Your screen should now look like this:

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Chapter 8.

[175]

Customizing Google Maps
Although modal boxes and sliding panes are useful, MooTools can help with other
JavaScript tasks. Google Maps has a comprehensive API for interacting with maps
on your website. MooTools can be used to load the Google Maps engine at the
correct time. It can also act as a bridge between the map and other HTML elements
on your site.

To get started, you will fi rst need to get an API key to use Google Maps on your
domain. You can sign up for a free key at http://code.google.com/apis/maps/
signup.html. Even if you are working on your local computer, you still need the
key. For instance, if the base URL of your Joomla installation is http://localhost/
joomla, you will enter localhost as the domain for your API key.

Once you have an API key ready, create the fi le basicmap.js in /components
/com_js, and fi ll it with the following code:

window.addEvent('domready', function() {
 if (GBrowserIsCompatible()) {

 var map = new GMap2($('map_canvas'));
 map.setCenter(new GLatLng(38.89, -77.04), 12);

 window.onunload=function(){
 GUnload();
 };

 }
});

 The entire script is wrapped within a call to the MooTools-specifi c addEvent()
member function of window, just like the SqueezeBox script for the modal box,
earlier. Because we want this code to execute once the DOM is ready, the fi rst
parameter is the event name 'domready'. The second parameter is an anonymous
function containing our code.

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Using JavaScript effects

[176]

What does the call to function() do?
 Using function() in JavaScript is a way of creating an anonymous
function. This way, you can create functions that are used in only one
place (such as event handlers) without cluttering the namespace with a
needless function name. Also, the code within the anonymous function
operates within its own scope; this is referred to as a closure. Closures
are very frequently used in modern JavaScript frameworks, for event
handling and other distinct tasks.

Once inside of the function, GBrowserIsCompatible() is used to determine if the
browser is capable of running Google Maps. If it is, a new instance of GMap2() is
declared and bound to the HTML element that has an id of 'map_canvas' and is
stored into map. The call to $('map_canvas') is a MooTools shortcut for
document.GetElementById().

Next, the setCenter() member function of map is called to tell Google Maps where
to center the map and how far to zoom in. The fi rst parameter is a GLatLng() object,
which is used to set the specifi c latitude and longitude of the map's center. The
other parameter determines the zoom level, which is set to 12 in this case. Finally,
the window.onunload event is set to a function that calls GUnload(). When the user
navigates away from the page, this function removes Google Maps from memory, to
prevent memory leaks.

With our JavaScript in place, it is now time to add a function to the controller in
/components/com_js/js.php that will load it along with some HTML. Add the
following basicMap() function to this fi le:

function basicMap()
{
 $key = 'DoNotUseThisKeyGetOneFromCodeDotGoogleDotCom';

 JHTML::_('behavior.mootools');

 $document =& JFactory::getDocument();
 $document->addScript('http://maps.google.com/maps?file=api&v=
 2&key=' . $key);
 $document->addScript(
 JURI::base() . 'components/com_js/basicmap.js');

 ?>
 <div id="map_canvas" style="width: 500px; height: 300px"></div>
 <?php
}

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Chapter 8.

[177]

 The basicMap() function starts off by setting $key to the API key received from
Google. You should replace this value with the one you receive at http://code.
google.com/apis/maps/signup.html. Next, JHTML::_('behavior.mootools');
is called to load MooTools into the <head> tag of the HTML document. This
is followed by getting a reference to the current document object through the
getDocument() member function of JFactory. The addScript() member function
is called twice—once to load in the Google Maps API (using our key), then again to
load our basicmap.js script. (The Google Maps API calls in all of the functions and
class defi nitions beginning with a capital 'G'.)

Finally, a <div> with an id of 'map_canvas' is sent to the browser. Once this
function is in place and js.php has been saved, load index.php?option=com_
js&task=basicMap in the browser. Your map should look like this:

We can make this map slightly more interesting by adding a marker to a specifi c
address. To do so, add the highlighted code below to the basicmap.js fi le:

 window.addEvent('domready', function() {
 if (GBrowserIsCompatible()){
 var map = new GMap2($('map_canvas'));
 map.setCenter(new GLatLng(38.89, -77.04), 12);

 var whitehouse = new GClientGeocoder();

 whitehouse.getLatLng('1600 Pennsylvania Ave NW',
 function(latlng){

 marker = new GMarker(latlng);

 marker.bindInfoWindowHtml('The White
 House');

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Using JavaScript effects

[178]

 map.addOverlay(marker);

 });

 window.onunload=function(){
 GUnload();
 };

 }
});

This code sets whitehouse as an instance of the GClientGeocoder class. Next, the
getLatLng() member function of GClientGeocoder is called. The fi rst parameter is
the street address to be looked up. The second parameter is an anonymous function
where the GLatLng object is passed once the address lookup is complete. Within this
function, marker is set as a new GMarker object, which takes the passed-in latlng
object as a parameter. The bindInfoWindowHTML() member function of GMarker is
called to add an HTML message to appear in a balloon above the marker. Finally, the
maker is passed into the addOverlay() member function of GMap2, to place it on
the map.

Save basicmap.js and then reload index.php?option=com_js&task=basicMap.
You should now see the same map, only with a red pin. When you click on the red
pin, your map should look like this:

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Chapter 8.

[179]

Interactive maps
Th ese two different maps show the basic functionality of getting Google Maps on
your own website. These maps are very basic; you could easily create them at maps.
google.com then embed them in a standard Joomla! article with the HTML code
they provide you. However, you would not have the opportunity to add functions
that interact with the other elements on your page. To do that, we will create some
more HTML code and then write some MooTools-powered JavaScript to bridge our
content with Google Maps.

Open the /components/com_js/js.php fi le and add the following selectMap()
function to the controller:

function selectMap()
{
 $key = 'DoNotUseThisKeyGetOneFromCodeDotGoogleDotCom';

 JHTML::_('behavior.mootools');

 $document =& JFactory::getDocument();
 $document->addScript('http://maps.google.com/maps?file=api&v
 =2&key=' . $key);
 $document->addScript(
 JURI::base() . 'components/com_js/selectmap.js');

 ?>
 <div id="map_canvas" style="width: 500px; height: 300px"></div>
 <select id="map_selections">
 <option value="">(select...)</option>
 <option value="1200 K Street NW">Salad Surprises</option>
 <option value="1221 Connecticut Avenue NW">The Daily
 Dish</option>
 <option value="701 H Street NW">Sushi and Sashimi</option>
 </select>
 <?php
}

This function is almost identical to basicMap() except for two things—
selectmap.js is being added instead of basicmap.js, and a <select> element has
been added beneath the <div>. The <select> element has an id that will be used in
the JavaScript. The options of the <select> are restaurants, with different addresses
as values. The JavaScript code will bind a function to the onChange event so that the
marker will move as different restaurants are selected.

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Using JavaScript effects

[180]

T o add this JavaScript, create a fi le named selectmap.js in the /components/
com_js folder, and fi ll it with the following code:

window.addEvent('domready', function() {
 if (GBrowserIsCompatible()) {

 var map = new GMap2($('map_canvas'));
 map.setCenter(new GLatLng(38.89, -77.04), 12);

 var restaurant = new GClientGeocoder();

 $('map_selections').addEvent('change', function(){
 if(this.value != '')
 {
 name = this.options[this.selectedIndex].text;
 restaurant.getLatLng(this.value, function(latlng){
 map_marker = new GMarker(latlng);
 map.clearOverlays();
 map.addOverlay(map_marker);
 map_marker.openInfoWindowHtml('' + name +
'');
 });
 }
 });

 window.onunload=function(){
 GUnload();
 };

 }
});

This script is similar to the one used for the fi rst two maps, until we get past
the call to map.setCenter(). The variable restaurant is fi rst set as an instance
of the GClientGeocoder() class. However, member functions are not called on
it right away, as it was done in the previous example. This is because we want
to wait for the <select> element to change before we do anything. The call to
$('map_selections') fi nds the <select> element, and then addEvent() is used
to assign a function to the onChange event; the string 'change' is passed as the
fi rst parameter.

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Chapter 8.

[181]

Th e function passed in as the second parameter fi rst checks to make sure that the
element's value is not null by checking this.value. If the value is not null, this
function proceeds by getting the option's text and storing it in name. Then the
getLatLng() member function of GClientGeocoder is called on restaurant. The
street address is passed in as the fi rst parameter. Once the latitude and longitude of
the address is found, the anonymous function in the second parameter accepts the
GLatLng object that is returned, using it to set map_marker as a new GMarker object.

Before adding the marker to the map, the clearOverlays() function of the map
object is called to remove any previously-placed marker. Then, the marker is passed
into the addOverlay() function to be placed on the map. Although the marker
is now set on the map, we can still interact with it. The openInfoWindowHtml()
member function of GMarker allows us to do this and pass in some HTML with the
name of the restaurant.

With the controller function and JavaScript in place and saved, load index.
php?option=com_js&task=selectMap in your browser. The map should load again,
this time with a dropdown box at the bottom. Select one of the restaurants, and then
switch to another. If you select Sushi and Sashimi from the list, your map should
look similar to the following:

These examples scratch the surface of what is possible with the Google Maps API. You
can manage layers, add shapes, use custom icons instead of the standard pins, and use
many other features to build sophisticated custom maps. For more information, go to
http://code.google.com/apis/maps/documentation/index.html where
you can read more about the available features.

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Using JavaScript effects

[182]

Using jQuery
Ano ther popular JavaScript framework is jQuery. The jQuery framework has
functionality that is similar to MooTools, but uses a different style of code. Although
they are separate projects, extra care must be taken when using them together.
By default, both frameworks automatically reserve $ to have a special meaning in
JavaScript. If you do not take steps to avoid this behavior, one library will overwrite
the other's assignments and the scripts will fail.

For tunately, jQuery has strategies that you can use to avoid this confl ict. There are
three things that you must do to keep jQuery and MooTools out of each other's way:

Load jQuery only after MooTools has been loaded
Call jQuery.noConflict() to return control of $ to MooTools
Reference jQuery directly in your scripts instead of using $

Wr iting jQuery code
Bef ore avoiding confl icts with MooTools, start by writing some jQuery without
MooTools being present. First, go to jquery.com, download the latest version of
jQuery, and then place it in the /components/com_js directory; the production
version of the script will be fi ne. Then, create a fi le named jquery-test.js in the
/components/com_js folder, and fi ll this new fi le with the following code:

$(document).ready(function() {
 $('#message_box').click(function() {
 $(this).addClass('contentheading');
 });
});

This is a simple application of jQuery—when the DOM is fully loaded in
the browser, the code within the fi rst call to function() executes. The code
$('#message_box') fi nds the element in the DOM that has an id of 'message_
box', and uses click() to assign an onClick JavaScript event to it. Finally, the
addClass() method is used to add the CSS class 'contentheading' to the element.

With jquery-test.js in place, open the /components/com_js/js.php fi le, and add
the following function task to the controller:

function useJquery()
{
 $document =& JFactory::getDocument();
 $document->addScript(
 JURI::base() . 'components/com_js/jquery-1.2.6.min.js');
 $document->addScript(

•
•
•

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Chapter 8.

[183]

 JURI::base() . 'components/com_js/jquery-test.js');

 ?>
 <p id="message_box">This is a message</p>
 <?php
}

First, a reference to the document object is stored in $document by using the
getDocument() member function of JFactory. Next, the addScript() member
function is used to add the jQuery framework and our test script. Finally, a
paragraph tag with the id 'message_box', and containing a short message, is
output. Load index.php?option=com_js&task=useJquery in your browser, and
click on the This is a message link. Your screen should now look similar to this:

Using jQuery with MooTools
The code that we just wrote works fi ne on its own, but will fail right now if we
attempt to also use a MooTools-driven effect. To remedy this, we need to make
an adjustment to our script and invoke jQuery's noConflict mode. Open the
fi le/components/com_js/js.php and add the following function to the controller:

function useJqueryAndMooTools()
{
 JHTML::_('behavior.tooltip');

 $document =& JFactory::getDocument();
 $document->addScript(
 JURI::base() . 'components/com_js/jquery-1.2.6.min.js');

 $document->addCustomTag('<script type="text/javascript">
 jQuery.noConflict();
 </script>');

 $document->addScript(
 JURI::base() . 'components/com_js/jquery-test.js');

 ?>
 <p id="message_box">This is a message</p>

 Homepage

 <?php
}

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Using JavaScript effects

[184]

The highlighted portions of useJqueryAndMooTools() are the added pieces that
differentiate it from useJquery(). The call to JHTML::_('behavior.tooltip');
loads the code necessary for the tooltip, including MooTools. Because MooTools
is now being loaded, we use the addCustomHeadTag() member function of the
document object to make a quick call to jQuery.noConflict(); so that $ is left for
MooTools. Finally, an anchor tag wrapped in a element has been added with
the tooltip information.

If you save js.php and load index.php?option=com_js&task=useJqueryAndMo
oTools now, you will get an error; we have not yet adjusted jquery-test.js to
account for the call to jQuery.noConflict();. Open jquery-test.js and make the
highlighted adjustment:

jQuery(document).ready(function($) {

 $('#message_box').click(function() {
 $(this).addClass('contentheading');
 });
});

Because the $ shortcut is no longer available, we must call the jQuery function
by name. However, we can regain control of the $ shortcut within our jQuery
code. This is because the call to function() allows us to pass a reference to the
jQuery function into the local scope, with any desired name. Because $ has been
specifi ed as the parameter of function(), the rest of the code can use it without
further modifi cation.

Load index.php?option=com_js&task=useJqueryAndMooTools in your browser,
click on the This is a message link, then move and the mouse over the Homepage
link. Your screen should look similar to this:

Always load MooTools first
The t rick to using jQuery and MooTools together in Joomla! is to make sure that
MooTools loads before jQuery does. In the useJqueryAndMooTools() function, if
you move the call to JHTML::_('behavior.tooltip'); any time after the call to
addScript() that loads in jQuery, an error will occur. Instead, MooTools must load
fi rst and defi ne $. Then jQuery.noConflict(); can be called to return $ back to its
original assignment.

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Chapter 8.

[185]

This is easily managed when you know and can control every instance where
MooTools is used. However, if you are building a self-contained extension for others
to use, it is quite possible that they are using other extensions that load MooTools.
For instance, if someone has a module for a photo gallery that uses MooTools, the
MooTools framework will be added to the <head> section of the HTML document
after your component with jQuery loads. This will cause a JavaScript error.

The safest way of avoiding this situation is to force the MooTools library to
load in your extension before you load jQuery. To do this, simply add JHTML::_
('behavior.mootools'); in your extension before adding the jQuery framework to
<head>. The call to JHTML::_('behavior.mootools'); detects whether MooTools
has been loaded yet, and loads it now if it has not.

A downside to this workaround is that the MooTools framework will be included
even if it is never used. This will slow down the load time of your site slightly and
use resources in the JavaScript environment. If you are building an extension that
will not be distributed or reused, you can hard-code the references to jQuery in your
template after <jdoc:include type="head" />. In this scenario, jQuery will be
loaded on every page and will eventually be used where you determine. If MooTools
is loaded by another extension, it will happen before jQuery is initialized.

Summary
Joomla! is ready for your modern JavaScript needs. By using the MooTools JavaScript
framework, you can fi nd elements and assign event handlers to them. You can also
use pre-built functions within Joomla! to generate the JavaScript necessary for many
typical effects. Regardless of the number of effects used, Joomla! will make sure that
the MooTools framework is only loaded once, as long as you use the JHTML member
functions. You can also use jQuery with MooTools in Joomla!, provided that you take
precautions to make sure that the frameworks do not confl ict.

http://www.packtpub.com/learning-joomla!-1.5-extension-development/book

For More Information:
www.packtpub.com/learning-joomla!-1.5-extension-development/book

Where to buy this book
You can buy Learning Joomla! 1.5 Extension Development from the Packt Publishing
website: http://www.packtpub.com/learning-joomla!-1.5-
extension-development/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

http://www.packtpub.com/Shippingpolicy
http://www.packtpub.com/
http://www.packtpub.com/learning-joomla!-1.5-extension-development/book
http://www.packtpub.com/Shippingpolicy

